Exercise 43
Revision as of 13:59, 1 August 2020 by 218.212.131.69 (talk)
Find: \[\lim_{x \to 0} \frac{e^{x}-1-x}{x-\ln{\left(1+x\right)}}\]
Question (i) | \[\lim_{x \to 0} \frac{x-\sin{x}}{x^{3}}\] |
Question (ii) | \[\lim_{x \to 0} \frac{xe^{x}-\ln{1+x}}{x^{2}}\] |
Question (iii) | \[\lim_{x \to 0} \frac{e^{2x}-e^{-2x}}{2x}\] |
Question (iv) | \[\lim_{x \to 0} \frac{\sqrt{1+x}+\sqrt{1-x}-2}{\ln{\left(1-x^{2}\right)}}\] |
Question (v) | \[\lim_{x \to 0} \frac{e^{2x}-1}{\ln{\left(1+x\right)}}\] |
Question (vi) | \[\lim_{x \to 0} \frac{x^{2} \tan{x}}{\sqrt{1-x^{2}}-1}\] |
Question (vii) | \[\lim_{x \to 0} \frac{\sin^{-1}{x}-x}{x^{3} \cos{x}}\] |
Question (viii) | \[\lim_{x \to 0} \left(\frac{1}{\sin{x}}-\frac{1}{x}\right)\] |
Question (ix) | \[\lim_{x \to 0} \left(\frac{1}{x}-\cot{x}\right)\] |
Question (x) | \[\lim_{x \to 0} \frac{\csc{x}-\cot{x}}{x}\] |
Question (xi) | \[\lim_{x \to 0} \frac{\tan{x}-x}{x-\sin{x}}\] |
Question (xii) | \[\lim_{x \to 0} \frac{x-\ln{\left(1+x\right)}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\] |