Difference between revisions of "Exercise 42"
Jump to navigation
Jump to search
Line 44: | Line 44: | ||
|- | |- | ||
|Question 1(i) | |Question 1(i) | ||
− | |<math>\ln{(\ | + | |<math>\frac{x \ln{\left(1+x\right)}}{\sqrt{1+x}}</math> to <math>x^{4}</math> |
|- | |- | ||
|Question 1(ii) | |Question 1(ii) | ||
− | |<math> | + | |<math>??</math> |
|- | |- | ||
|Question 1(iii) | |Question 1(iii) | ||
− | |<math> | + | |<math>??</math> |
|- | |- | ||
|Question 1(iv) | |Question 1(iv) |
Revision as of 14:11, 1 August 2020
Expand the following functions as far as the term indicated:
Question 1(i) | [math]\ln{(\cos{x})}[/math] to [math]x^{6}[/math] |
Question 1(ii) | [math]e^{x}\cos{x}[/math] to [math]x^{5}[/math] |
Question 1(iii) | [math]\tan{x}[/math] to [math]x^{5}[/math] |
Question 1(iv) | [math]e^{\sin{x}}[/math] to [math]x^{4}[/math] |
Question 1(v) | [math]\sin^{2}{x}[/math] to [math]x^{6}[/math] |
Question 1(vi) | [math]\sin^{-1}{x}[/math] to [math]x^{5}[/math] |
Question 1(vii) | [math]\sqrt{1+\sin{x}}[/math] to [math]x^{3}[/math] |
Question 1(viii) | [math]\ln{\left(1+\sin{x}\right)}[/math] to [math]x^{4}[/math] |
Question 1(ix) | [math]\frac{1}{\sqrt{1-5x}}[/math] to [math]x^{4}[/math] |
Question 1(x) | [math]\frac{2}{\sqrt[3]{8+3h}}[/math] to [math]h^{3}[/math] |
Question 1(xi) | [math]\ln{\left(1+e^{x}\right)}[/math] to [math]h^{2}[/math] |
Question 1(xii) | [math]\tan^{-1}{x}[/math] to [math]h^{5}[/math] |
Find expansions as far as the term indicated for:
Question 1(i) | [math]\frac{x \ln{\left(1+x\right)}}{\sqrt{1+x}}[/math] to [math]x^{4}[/math] |
Question 1(ii) | [math]??[/math] |
Question 1(iii) | [math]??[/math] |
Question 1(iv) | [math]e^{\sin{x}}[/math] to [math]x^{4}[/math] |
Question 1(v) | [math]\sin^{2}{x}[/math] to [math]x^{6}[/math] |
Question 1(vi) | [math]\sin^{-1}{x}[/math] to [math]x^{5}[/math] |
Question 1(vii) | [math]\sqrt{1+\sin{x}}[/math] to [math]x^{3}[/math] |
Question 1(viii) | [math]\ln{\left(1+\sin{x}\right)}[/math] to [math]x^{4}[/math] |
Question 1(ix) | [math]\frac{1}{\sqrt{1-5x}}[/math] to [math]x^{4}[/math] |